Energy Management Smart Power Quality Analyzer Type WM3-96

- Sampling rate: $\mathbf{1 0}$ samples/s
- Harmonic distorsion analysis (FFT) up to 50th harmonic with both graph and numerical indication (of current and voltage)
- Harmonics source detection
- Optional RS232 + real time clock function with data logging of alarm events

Product Description

32-bit μ P-based smart power quality analyzer with a built-in configuration key-pad.
The housing is for panel mounting and ensures a degree of protection (front) of IP 65. The instrument is parti-
cularly indicated for those applications where there is the need to control the power supply quality. The variables being displayed are more than 400.

- Class 0.5
- 32-bit μ P-based modular smart power quality analyzer
- Graph display (128 x 64 dots)
- Front size: $96 \times 96 \mathrm{~mm}$
- Measurements of single and system variables: $\mathbf{W}, \mathbf{W}_{\text {avg }}, ~ V A$, $\mathrm{VA}_{\text {avg }}, \mathrm{PF}, \mathrm{PF}_{\text {avg }}, \mathrm{V}, \mathrm{A}, \mathrm{A}_{\text {avg }}$ (for all of them max. and min. values). Energies: $\pm \mathrm{kWh}, 4$ quadrant VArh measurement
- TRMS measurement of distorted waves (voltage/current)
- Current and voltage inputs with autoranging capability
- 4x4-dgt instantaneous variable read-out
- 4x9-dgt total energies read-out
- 4x6-dgt partial energies read-out
- 48 independent energy meters to be used as single, dual, multi-time energy management
- Degree of protection (front): IP 65
- Up to 4 optional alarm setpoints
- Up to 4 optional pulse outputs
- Up to 4 optional analogue outputs
- Optional serial RS422/485 output
- Universal power supply: 18 to 60 VAC/DC - 90 to 260 VAC/DC
- MODBUS, JBUS protocol

Ordering Key wM3-96AV53H xx xx xx xx x

Type Selection

Range code		Slot 1 (signal retransmission)	
AV5:	90/250/433 VAC -	XX:	None
	1/5 AAC	A1:	Single analogue output, 20 mADC (standard)
	$\begin{aligned} & (\max .300 \mathrm{~V}(\mathrm{~L}-\mathrm{N}) / \\ & 520 \mathrm{~V}(\mathrm{~L}-\mathrm{L})-6 \mathrm{~A}) \end{aligned}$	A2:	20 mADC (standard) Single analogue output,
	(standard)		
AV7:	$\begin{aligned} & 110 / 40 / 690 \mathrm{VAC}- \\ & 1 / 5 \mathrm{AAC} \\ & (\max .480 \mathrm{~V}(\mathrm{~L}-\mathrm{N}) / \\ & 830 \mathrm{~V}(\mathrm{~L}-\mathrm{L}) / 6 \mathrm{~A}^{11} \end{aligned}$	A3:	Single analogue output $\pm 10 \mathrm{mADC}{ }^{1)}$
		A4:	Single analogue outpu
			$\pm 20 \mathrm{mADC}$
		B1:	Dual analogue output 20 mADC (standard)
Measurement		B2:	Dual analogue output,
			$\pm 5 \mathrm{mADC}$
3:	One phase, threephase system (3 or 4 wires, balanced load) Three phase system (3 or 4 wires, unbalanced load)	B3:	Dual analogue output, $\pm 10 \mathrm{mADC} \text { 1) }$
		B4:	Dual analogue output,
		V1:	± 20 mADC ${ }^{1)}$ Single analogue outp
			10 VDC (standard)
		V2:	Single a nalogue output
			± 1 VDC ${ }^{1)}$
		V3:	Single analogue output, +5 VDC ${ }^{1)}$
Power supply		V4:	Single analogue output,
			± 10 VDC
	18 to 60 VAC/DC ${ }^{1)}$	W1:	Dual analogue output
H:	90 to $260 \mathrm{VAC/DC}$	W2:	Dual analogue outp
			± 1 VDC ${ }^{1)}$
		W3:	Dual analogue output,
			$\pm 5 \mathrm{VDC}{ }^{10}$ (
${ }^{1)}$ On request		W4:	Dual analogue output,

Slot 2 (signal retransmission)
XX: None
B1: Dual analogue output, 20 mADC (standard)
B2: Dual analogue output, $\pm 5 \mathrm{mADC}{ }^{11}$
B3: Dual analogue output, ± 10 mADC ${ }^{1)}$
B4: Dual analogue output, ± 20 mADC ${ }^{1)}$
W1: Dual analogue output, 10 VDC (standard)
W2: Dual analogue output, ± 1 VDC ${ }^{1)}$
W3: Dual analogue output, ± 5 VDC ${ }^{1)}$
W4: Dual analogue output, ± 10 VDC ${ }^{1)}$
S1: Serial output, RS485 multidrop, bidirectional ${ }^{11}$

	alarm or pulse outputs)
XX:	None
R1:	Single relay output, (AC1-8AAC @ 250VAC) 1)
R2:	Dual relay output, (AC1-8AAC @ 250VAC) ${ }^{1)}$
01:	Single open collector
02:	output (30V/100mADC) "
	put (30V/100mADC) ${ }^{1)}$
D1:	3 digital inputs ${ }^{1)}$

Slot 4 (alarm or pulse outputs)
XX: None
R2: Dual relay output,
(AC1-8AAC @ 250VAC) 1)
O2: Dual open collector output ($30 \mathrm{~V} / 100 \mathrm{mADC}$) ${ }^{1)}$
04: 4 open collector outputs $(30 \mathrm{~V} / 100 \mathrm{mADC}){ }^{1)}$

Options
X: \quad None
S: \quad Serial RS232 + RTC
with this module it is possible to enable the automatic alarm logging.

A1: Single analogue output, 20 mADC (standard)
A2: Single analogue output, ± 10 mADC ${ }^{1)}$ ± 20 mADC ${ }^{11}$
B1: Dual analogue output, Dual analogue output, $\pm 5 \mathrm{mADC}{ }^{1}$
B3: Dual analogue output, Dual analogue output, ± 20 mADC ${ }^{1)}$

Single analogue output, ± 1 VDC ${ }^{1)}$ ± 5 VDC ${ }^{1)}$

Power supply
L: $\quad 18$ to 60 VAC/DC ${ }^{1)}$
${ }^{1)}$ On request

CARLO GAVAZZI

Input Specifications

Number of inputs Current	
	2 (measurement code: 1)
	6 (measurement code: 3)
Voltage	2 (measurement code: 1)
	4 (measurement code: 3)
Digital	4, for 3 free of voltage contacts for W-VA-A avg synchronization
	Reading voltage/current: 17.5 to $25 \mathrm{VDC} /<8 \mathrm{~mA}$
Accuracy (display, RS232/485)	$\mathrm{I}_{\mathrm{n}}: 5 \mathrm{~A}, \mathrm{If}_{\text {f. }}: 6 \mathrm{~A}$
	Un: $240 \mathrm{~V}_{\mathrm{L}-\mathrm{N}}, \mathrm{U}_{\text {f.s. }}: 300 \mathrm{~V}_{\mathrm{L}}$
Current	$\pm 0.5 \%$ rdg (0.2 to 1.2 ln)
	$\pm 5 \mathrm{~mA}$ (0.02 to 0.2 In)
Voltage	$\pm 0.5 \%$ rdg (0.2 to 1.25 Un)
	includes also:
	frequency, power supply
	and output load influences
Frequency Active power (@ $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$)	$\pm 0.1 \%$ rdg (40 to 440 Hz)
	$\begin{aligned} & \pm 0.5 \%(\mathrm{rdg}+\mathrm{ts})(\mathrm{PF} 0.5 \mathrm{UC} \\ & 0.1 \text { to } 1.2 \mathrm{In}, 0.2 \text { to } 1.2 \text { Un) } \end{aligned}$
	$\pm 1 \%$ rdg (PF 0.5 L/C,
	0.1 to $1.2 \mathrm{In}, 0.2$ to 1.2 Un)
Reactive power (@ $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$)	
	$\begin{aligned} & \pm 0.5 \%(\mathrm{rdg}+\mathrm{fs})(\mathrm{PF} 0.5 \mathrm{~L} / \mathrm{C}, \\ & 0.1 \text { to } 1.2 \mathrm{In}, 0.2 \text { to } 1.2 \mathrm{Un}) \end{aligned}$
	0.1 to $1.2 \mathrm{In}, 0.2$ to 1.2 Un) $\pm 1 \%$ rdg (PF 0.5 L/C,
	0.1 to $1.2 \mathrm{In}, 0.2$ to 1.2 Un)
Apparent power (@ $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$)	
	$\pm 0.5 \%$ (rdg + fs)
	(0.1 to $1.2 \mathrm{In}, 0.2$ to 1.2 Un)
	$\pm 1 \% \mathrm{rdg}$
	(0.1 to $1.2 \mathrm{In}, 0.2$ to 1.2 Un)
Energies (@ $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$)	
	Class 1 according to
	EN61036 and to EN61268
	lb: 5 A, Imax: 6 A
	$0.1 \mathrm{lb}: 500 \mathrm{~mA}$,
	Start-up current: 20 mA
	Un: 240 V
Harmonic distorsion (@ $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$)	1\% f.s. (f.s.: 100\%)
	phase: $\pm 2^{\circ}$; Imin: 0.1 Arms
	Imax: 15 Ap; Umin: 50 Vrms
	Umax: 500 Vp
	Sampling frequency $6400 \mathrm{~Hz} @ 50 \mathrm{~Hz}$
Additional errors	
Humidity	$\leq 0.3 \%$ rdg, 60% to 90% R.H.
Input frequency	$\leq 0.4 \%$ rdg, 62 to 400 Hz
Magnetic field	$\leq 0.5 \%$ rdg @ $400 \mathrm{~A} / \mathrm{m}$
Temperature drift	$\leq 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Sampling rate	6400 Hz @ 50Hz
Display	Graph LCD, 128x64dots, back-lighted. Selectable read-out for the instantaneous variables: 4×4-dgt or $4 \times 3^{1 / 2}$-dgt Total Energies: 4x9-dgt; Partial: 4x6-dgt
Max. and min. indication	Max. 9999 (99999999), Min. -9999 (-99999999)
Measurements	Current, voltage, power, energy, harmonic distortion (see "Display pages" table). TRMS measurement of a distorted wave voltage/current Coupling type: Direct Crest factor: ≥ 3 (max. 15Ap/500Vp (V L-N) or 15Ap/800Vp (V L-N)
Ranges (impedances)	
AV5 (Un/ln):	$\begin{aligned} & 90 \mathrm{~V} / \sqrt{ } 3 / 100 \mathrm{~V}(600 \mathrm{k} \Omega)- \\ & 1 \mathrm{AAC}(\leq 0.3 \mathrm{VA}) \\ & 90 \mathrm{~V} / \sqrt{3} / 100 \mathrm{~V}(600 \mathrm{k} \Omega)- \\ & 5 \mathrm{AAC}(\leq 0.3 \mathrm{VA}) \\ & 250 \mathrm{~V} / 433 \mathrm{~V}(600 \mathrm{k} \Omega)- \\ & 1 \mathrm{AAC}(\leq 0.3 \mathrm{VA}) \\ & 250 \mathrm{~V} / 433 \mathrm{~V}(600 \mathrm{k} \Omega)- \\ & 5 \mathrm{AAC}(\leq 0.3 \mathrm{VA}) \end{aligned}$
AV7 (Un/ln)	$\begin{aligned} & 110 \mathrm{~V} / \sqrt{ } 3 / 110 \mathrm{~V}(1 \mathrm{M} \Omega) \\ & 1 \mathrm{AAC}(0.3 \mathrm{VA}) \\ & 110 \mathrm{~V} / \sqrt{ } 3 / 110 \mathrm{~V}(1 \mathrm{M} \Omega)- \\ & 5 \mathrm{AAC}(\leq 0.3 \mathrm{VA}) \\ & 400 \mathrm{~V} / 690 \mathrm{~V}(1 \mathrm{M} \Omega)- \\ & 1 \mathrm{AAC}(\leq 0.3 \mathrm{VA}) \\ & 400 \mathrm{~V} / 690 \mathrm{~V}(1 \mathrm{M} \Omega)- \\ & 5 \mathrm{AAC}(\leq 0.3 \mathrm{VA}) \end{aligned}$
Frequency range	40 to 440 Hz
Over-load protection	
Continuous: voltage/current	$1.2 \times \mathrm{Un} / \mathrm{ln}$
For 1 s	
Voltage:	$2 \times$ Un
Current:	$20 \times 1 n$
Keyboard	4 keys: "S" for enter programming phase and password confirmation, "UP" and "DOWN" for value programming/function selection, page scrolling "F" for special functions

Output Specifications

Analogue outputs (on request)
Number of outputs
Accuracy
Range

Up to 4 (on request)
$\pm 2 \%$ f.s.
(@ $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R. $\mathrm{H} . \leq 60 \%$)
0 to 20 mADC
0 to $\pm 20 \mathrm{mADC}$

[^0]
Output Specifications (cont.)

Scaling factor	Programmable within the whole range of retransmission; it allows the retransmission management of all values from: 0 to 20 mADC 0 to $\pm 20 \mathrm{mADC}$ 0 to $\pm 10 \mathrm{mADC}$ 0 to $\pm 5 \mathrm{mADC}$ 0 to 10 VDC 0 to ± 10 VDC 0 to ± 5 VDC 0 to ± 1 VDC
Response time	≤ 200 ms typical (filter excluded, FFT excluded $31 / 2$ dgt indication)
Ripple	$\leq 1 \%$ according to IEC 60688-1 and EN 60688-1
Temperature drift	$200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Load: 20 mA output	$\leq 600 \Omega$
$\pm 20 \mathrm{~mA}$ output	$\leq 550 \Omega$
$\pm 10 \mathrm{~mA}$ output	$\leq 1100 \Omega$
$\pm 5 \mathrm{~mA}$ output	$\leq 2200 \Omega$
10 V output	$\geq 10 \mathrm{k} \Omega$
$\pm 10 \mathrm{~V}$ output	$\geq 10 \mathrm{k} \Omega$
$\pm 5 \mathrm{~V}$ output	$\geq 10 \mathrm{k} \Omega$
$\pm 1 \mathrm{~V}$ output	$\geq 10 \mathrm{k} \Omega$
Insulation	By means of optocouplers, $4000 \mathrm{~V}_{\text {ms }}$ output to measuring input $4000 \mathrm{~V}_{\mathrm{ms}}$ output to supply input
RS422/RS485 output (on request)	Multidrop bidirectional (static and dynamic variables)
Connections	2 or 4 wires, max. distance 1200 m , termination directly on the module
Adresses	1 to 255 , selectable by key-pad
Protocol	MODBUS/JBUS
Data (bidirectional)	
Dynamic (reading only)	System variables: P, $\mathrm{P}_{\text {Avg }}, \mathrm{S}, \mathrm{Q}, \mathrm{PF}, \mathrm{V}_{\mathrm{L}-\mathrm{L}}, \mathrm{f}, \mathrm{THD}$ energy and status of digital inputs, setpoint output. Single phase variables: $\mathrm{P}_{\mathrm{L} 1}, \mathrm{~S}_{\mathrm{L},}, \mathrm{Q}_{\mathrm{L} 1}, \mathrm{PF}_{\mathrm{L} 1}, \mathrm{~V}_{\mathrm{L}-1}, A_{\mathrm{L} 1}, T H D_{\mathrm{L} 1}$ $\mathrm{P}_{\mathrm{L}_{1}}, \mathrm{~S}_{\mathrm{L}_{2}}, \mathrm{Q}_{\mathrm{L}_{2}}, \mathrm{PF}_{\mathrm{L}_{12}}, \mathrm{~V}_{\mathrm{L}_{2}-\mathrm{N}}, \mathrm{A}_{\mathrm{A}_{2}}$, THD $\mathrm{LD}_{L_{2}}$
Static (writing only)	All programming data, reset of energy, activation of static output.
	Stored energy (EEPROM) max. 99.999.999 kWh/kVArh
Data format	1 -start bit, 8 -data bit, no parity/even parity, 1 stop bit
Baud-rate	1200, 2400, 4800 and 9600 selectable bauds
Insulation	By means of optocouplers, $4000 \mathrm{~V}_{\mathrm{ms}}$ output to measuring inputs $4000 \mathrm{~V}_{\text {ms }}$ output to supply input

RS232 output (on request)	bidirectional (static and dynamic variables)
Connections	3 wires, max. distance 15 m ,
Data format	1 -start bit, 8 -data bit, no parity, 1 -stop bit
Baud-rate	9600 bauds
Protocol	MODBUS (JBUS)
Other data	as for RS422/485
Digital outputs (on request)	The working of the outputs: pulse or alarm or both of them is fully programmable and is independent from the chosen output module.
Pulse output (on request)	
Number of outputs	Up to 4 (on request)
Type	From 1 to 1000 programmable pulses for K-M-G Wh, K-M-G VArh, open collector (NPN transistor) $V_{\text {ON }} 1.2 \mathrm{VDC} / \mathrm{max} .100 \mathrm{~mA}$ Voff 30 VDC max.
Pulse duration	220 ms (ON), $\geq 220 \mathrm{~ms}$ (OFF) According to DIN43864
Insulation	By means of optocouplers, $4000 \mathrm{~V}_{\text {ms }}$ output to measuring input, $4000 \mathrm{~V}_{\text {rms }}$ output to supply input.
Note	The outputs can be either open collector type or relay type (for this latter one see the characteristics mentioned in the ALARMS).
Alarms (on request)	
Number of setpoints	Up to 4, independent
Alarm type	Up alarm, down alarm, up alarm with latch, down alarm with latch, phase assymetry, phase loss, neutral loss
Setpoint adjustment	0 to 100% of the electrical scale
Hysteresis	0 to 100% of the electrical scale
On-time delay	0 to 255 s
Relay status	Selectable, Normally deenergized, normally energized
Output type	Relay, SPDT AC 1-8 A, 250 VAC DC 12-5 A, 24 VDC AC 15-2.5 A, 250 VAC DC 13-2.5 A, 24 VDC
Min. response time	$\leq 150 \mathrm{~ms}$, filter excluded, setpoint on-time delay: "0"
Insulation	$4000 \mathrm{~V}_{\text {rms }}$ output to measuring input, $4000 \mathrm{~V}_{\text {rms }}$ output to supply input
Note	The outputs can be either relay type or open collector type (for this latter one, see the characteristics mentioned in the PULSE OUTPUTS).

CARLO GAVAZZI

Software Functions

\begin{tabular}{|c|c|c|c|}
\hline Password

1st level

2nd level \& Numeric code of max. 3 digits; 2 protection levels of the programming data Password "0", no protection Password from 1 to 499, all data are protected \& Filtering coefficient Filter action \& | input electrical scale |
| :--- |
| 1 to 255 |
| Alarm, analogue and serial outputs (fundamental variables: $\mathrm{V}, \mathrm{I}, \mathrm{W}$ and their derived ones) |

\hline Measurement selection \& See the relevant table \& \multirow[t]{3}{*}{Event logging} \& \multirow[t]{3}{*}{Only with RS232 + RTC module. The alarms max/min values will be stored with time (hh:mm:ss) and date (dd:mm:yy) references Max. capacity: 480 events}

\hline Transformer ratio \& For CT up to 30000 A , For VT up to 600 kV \& \&

\hline Scaling factor Operating mode \& \multirow[t]{2}{*}{| Electrical scale: compression/ expansion of the input scale to be connected to up to 4 analogue outputs and up to 4 alarm outputs. |
| :--- |
| Programmable within the whole measuring range |} \& \&

\hline Electrical range \& \& \multirow[t]{2}{*}{Page Variables} \& \multirow[t]{2}{*}{$\min 4 /$ page, one freely prog. page +26 variable pages + according to the kind of period selection: up to 12 energy meter pages.}

\hline Filter Filter operating range \& 0 to 99.9% of the \& \&

\hline
\end{tabular}

Supply Specifications

AC voltage

$$
\begin{aligned}
& 90 \text { to } 260 \text { VAC/DC (standard), } \\
& 18 \text { to } 60 \text { VAC/DC (on request), }
\end{aligned}
$$

$$
\begin{aligned}
& \leq 30 \text { VA/12 } \mathrm{W}(90 \text { to } 260 \mathrm{~V}) \\
& \leq 20 \text { VA/12 W (18 to } 60 \mathrm{~V})
\end{aligned}
$$

General Specifications

Operating temperature	0 to $+50^{\circ} \mathrm{C}\left(32\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ (R.H. $<90 \%$ non-condensing)
Storage temperature	-10 to $+60^{\circ} \mathrm{C}\left(14\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ (R.H. $<90 \%$ non-condensing)
Insulation reference voltage	$300 \mathrm{~V}_{\mathrm{ms}}$ to ground (AV5 input)

outputs to ground\end{array}\right|\)

Housing Dimensions Material	$96 \times 96 \times 140 \mathrm{~mm}$ ABS, self-extinguishing: UL 94 V-0
Degree of protection	Front: IP65
Weight	Approx. 600 g (packing included)

Function Description

Input and output scaling capability

Working of the analogue outputs (y) versus input variables (x)

Figure A
The sign of measured quantity and output quantity remains the same. The output quantity is proportional to the measured quantity.

Figure D

The sign of measured quantity and output quantity remains the same. With the measured quantity being zero, the output quantity already has the value $\mathrm{Y} 1=0.2 \mathrm{Y} 2$.
Live zero output.

Figure B

The sign of measured quantity and output quantity changes simultaneously. The output quantity is proportional to the measured quantity.

Figure C

The sign of measured quantity and output quantity remains the same. On the range X0...X1, the output quantity is zero. The range $\mathrm{X} 1 \ldots \mathrm{X} 2$ is delineated on the entire output range $\mathrm{Y} 0=\mathrm{Y} 1 . . \mathrm{Y} 2$ and thus presented in strongly expanded form.

Figure E

The sign of the measured quantity changes but that of the output quantity remains the same. The output quantity steadily increases from value X 1 to value X 2 of the measured quantity.

Figure F

The sign of the measured quantity remains the same, that of the output quantity changes as the measured quantity leaves range $\mathrm{XO} 0 . . \mathrm{X1}$ and passes to range X1...X2 and vice versa.

Mode of Operation

Waveform of the signals that can be measured

Figure G
Sine wave, undistorted
Fundamental content 100\%
Harmonic content 0\%
$\mathrm{A}_{\mathrm{rms}}=\quad 1.1107|\overline{\mathrm{~A}}|$

Figure H
Sine wave, indented
Fundamental content 10...100\%
Harmonic content 0... 90%
Frequency spectrum 3rd to 50th harmonic

Figure I
Sine wave, distorted
Fundamental content 70...90\%
Harmonic content 10...30\%
Frequency spectrum 3rd to 50th harmonic

CARLO GAVAZZI

Harmonic Distortion Analysis

Analysis principle	FFT		possible to know if the distor-
Harmonic measurement Current Voltage	Up to 50th harmonic Up to 50th harmonic		tion is absorbed or generated Note: if the system is a 3-wire type the angle cannot be measured.
Type of harmonics	THD (VL1) THD odd (VL1) THD even (VL1) and also for the other phases:	Harmonic details	For every THD page it is possible to see the harmonic order.
	L2, L3. THD (IL1) THD odd (LL1) THD even (lL1) and also for the other phases: L2, L3.	Display pages	The harmonics content is displayed as a graph showing the whole harmonic spectrum. The information is given also as numerical information: THD in \% / RMS value THD odd in \% / RMS value THD even in \% / RMS value single harmonic in \% / RMS value
Harmonic phase angle	The instrument measures the angle between the single harmonic of " V " and the single harmonic of "l" and displays		
	the result as a symbol in one of the four quadrants. According to the position of the symbol in the quadrant, it is	Others	The harmonic distortion can be measured in both 3 -wire or 4 -wire systems. Tw: 0.02

Energy Time Period Management

Time periods	Selectable: single time, dual time and multi-time
Single time Number of energy meters	Total: 4 (9-digit) (no partial counters)
Dual time Number of energy meters	Total: 4 (9-digit) Partial: 8 (6-digit) 2, programmable within 24 hours
Time periods	Total: 4 (9-digit)
Multi-time	Partial: 48 (6-digit) Number of energy meters
Time periods	within 24 hours
3, programmable within	
Time seasons	12 months

Management concept (multi-time)
(a)

(b)
(c)
max. 3

CARLO GAVAZZI

Display Pages

Variables that can be displayed in case of a three-phase system, 4-wire connection.

No	1st variable	2nd variable	3rd variable	4th variable	Note
0	Selectable	Selectable	Selectable	Selectable	
1	V L1-N	V L2-N	V L3-N	V L-N sys	Sys $=\Sigma$
2	V L1	V L2	V L3	V sys	Sys $=\Sigma$
3	A L1	A L2	A L3	A sys	Sys $=\Sigma$
4	W L1	W L2	W L3	W sys	Sys $=\Sigma$
5	VAr L1	VAr L2	VAr L3	VAr sys	Sys $=\Sigma$
6	VA L1	VA L2	VA L3	VA sys	Sys $=\Sigma$
7	PF L1	PF L2	PF L3	PF sys	
8	VL1-N	A L1	PF L1	W L1	
9	V L2-N	A L2	PF L2	W L2	
10	V L3-N	A L3	PF L3	W L3	
11	V sys	PF sys	VAr sys	W sys	Sys = Σ
12	A sys	PF sys	Hz	W sys	Sys $=\Sigma$
13	A avg	VA avg	PF avg	W avg	
14	(MAX1)	(MAX2)	(MAX3)	(MAX4)	The MAX value can be one of the
15	(MAX5)	(MAX6)	(MAX7)	(MAX8)	above mentioned (No. 0 to No. 13)
16	(MAX9)	(MAX10)	(MAX11)	(MAX12)	
17	(MIN1)	(MIN2)	(MIN3)	(MIN4)	The MIN value can be one of the
18	(MIN5)	(MIN6)	(MIN7)	(MIN8)	above mentioned (No. 0 to No. 13)
19	Histogram FFT V1 (THD, TADo, THDe, Single harmonic)				Only if analysis V1-I1 is activated
20	Histogram FFT I1 (THD, TADo, THDe, Single harmonic)				Only if analysis V1-I1 is activated
21	Histogram FFT V2 (THD, TADo, THDe, Single harmonic)				Only if analysis V2-I2 is activated
22	Histogram FFT 12 (THD, TADo, THDe, Single harmonic)				Only if analysis V2-I2 is activated
23	Histogram FFT V3 (THD, TADo, THDe, Single harmonic)				Only if analysis V3-13 is activated
24	Histogram FFT I3 (THD, TADo, THDe, Single harmonic)				Only if analysis V3-13 is activated
25	KWh + TOT	KWh - TOT	KVAr + TOT	KVAr - TOT	
26	KWh+	KWh-	KVAr+	KVAr-	Partial energy meters

Used Calculation Formulas

Formulas being used for single-phase measurements

Instantaneous effective voltage
$V_{I N}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{I N}\right)_{1}^{2}}$
Instantaneous active power
$W_{1}=\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right) \cdot\left(A_{1}\right)_{1}$
Instantaneous power factor
$\cos \phi_{1}=\frac{W_{1}}{V A_{1}}$
Instantaneous effective current
$A_{1}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(A_{1}\right)_{1}^{2}}$
Instantaneous apparent power

$$
V A_{1}=V_{1 N} \cdot A_{1}
$$

Instantaneous reactive power
VAr $r_{1}=\sqrt{\left(V A_{1}\right)^{2}-\left(W_{1}\right)^{2}}$

Formulas being used for 3-phase measurements
Equivalent three-phase voltage
$V_{\Sigma}=\frac{V_{12}+V_{23}+V_{31}}{3}$
Three-phase reactive power
$V A r_{2}=\left(V A r_{1}+V A r_{2}+V A r_{3}\right)$
Equivalent three-phase current
$A_{\Sigma}=\frac{V A_{\Sigma}}{\sqrt{3} \cdot V_{\Sigma}}$
Three-phase active power
$W_{\Sigma}=W_{1}+W_{2}+W_{3}$
Three-phase apparent power
$V A_{\Sigma}=\sqrt{W_{\Sigma}{ }^{2}+V A r_{\Sigma}{ }^{2}}$
Equivalent three-phase power factor $\cos \phi_{\Sigma}=\frac{W_{\Sigma}}{V A_{\Sigma}}$

Total harmonic distortion

Harmonic values:
THDi-THD of parameter T at phase i
Tn, i - value of parameter T at the n 'th harmonic of phase i

Consumption Recording

$\mathrm{kWh}_{\mathrm{i}}=$ total consumed active energy at phase i
$\mathrm{kVArh}_{\mathrm{i}}=$ total consumed reactive energy at phase i
$P_{i}(t)=$ total RMS active power at phase i of time t
$\mathrm{Q}_{\mathrm{i}}(\mathrm{t})=$ total RMS reactive power at phase i of time t
$\mathrm{t}_{1} \mathrm{t}_{2}=$ starting and ending time points of consumption recording
$\mathrm{P}_{\mathrm{n}, \mathrm{i}}=$ total RMS active power at phase i of discrete time n
$Q_{\mathrm{n}, \mathrm{i}}=$ total RMS reactive power at phase i of discrete time n
$\Delta t=$ time interval between two successive power consumptions
n1, n2 = starting and ending discrete time points of consumption recording

List of the variables that can be connected to:

- max./min. variable detection
- analogue outputs
- alarm outputs

No	Variable	1-phase Sys.	$\begin{aligned} & \text { 3-ph. + N } \\ & \text { Bal. Sys. } \end{aligned}$	$\begin{aligned} & \text { 3-ph. }+\underset{\text { N }}{N} \\ & \text { Unbal. Sys. } \end{aligned}$	Bal.ph. Sys.	$\begin{gathered} \text { 3-ph. } \\ \text { Unbal. Sys. } \end{gathered}$	Note
1	V L1-N	0	x	x	0	0	
2	V L2-N	0	X	X	0	0	
3	V L3-N	0	X	X	0	0	
4	V L-N sys	0	X	X	0	0	Sys $=\sum$
5	V L1	X	X	X	0	0	
6	V L2	0	X	X	0	0	
7	V L3	0	X	X	0	0	
8	V sys	0	X	X	X	X	Sys $=\sum$
9	A L1	X	X	X	0	0	
10	A L2	0	X	X	0	0	
11	A L3	0	X	X	0	0	
12	A sys	0	X	X	X	X	Sys $=\sum$
13	W L1	X	X	X	0	0	
14	W L2	0	X	X	0	0	
15	W L3	0	X	X	0	0	
16	W sys	0	X	X	X	X	Sys $=\sum$
17	VAr L1	X	X	X	0	0	
18	VAr L2	0	X	X	0	0	
19	VAr L3	0	X	X	0	0	
20	VAr sys	0	X	X	X	X	Sys $=\sum$
21	VA L1	X	X	X	0	0	
22	VA L2	0	X	X	0	0	
23	VA L3	0	X	X	0	0	
24	VA sys	0	X	X	X	X	Sys $=\sum$
25	PF L1	X	X	X	0	0	
26	PF L2	0	X	X	0	0	
27	PF L3	0	X	X	0	0	
28	PF sys	0	X	X	X	X	Sys $=\sum$
29	Hz	X	X	X	X	X	
30	THD V1	X	X	X	X	X	if FFT V1-I1 is activated
31	THDo V1	X	X	X	X	X	if FFT V1-I1 is activated
32	THDe V1	x	X	X	X	X	if FFT V1-I1 is activated
33	THD V2	0	X	X	X	X	if FFT V2-I2 is activated
34	THDo V2	0	X	X	X	X	if FFT V2-I2 is activated
35	THDe V2	0	X	X	X	X	if FFT V2-I2 is activated
36	THD V3	0	X	X	X	X	if FFT V3-I3 is activated
37	THDo V3	0	X	X	X	X	if FFT V3-I3 is activated
38	THDe V3	0	X	X	X	X	if FFT V3-I3 is activated
39	THD I1	X	X	X	X	X	if FFT V1-I1 is activated
40	THDo I1	X	X	X	X	X	if FFT V1-I1 is activated
41	THDe I1	X	X	X	X	X	if FFT V1-I1 is activated
42	THD I2	0	X	X	X	X	if FFT V2-I2 is activated
43	THDo I2	0	X	X	X	X	if FFT V2-I2 is activated
44	THDe I2	0	X	X	X	X	if FFT V2-I2 is activated
45	THD I3	0	X	X	X	X	if FFT V3-I3 is activated
46	THDo I3	0	X	X	X	X	if FFT V3-I3 is activated
47	THDe I3	0	X	X	X	X	if FFT V3-I3 is activated
48	A avg	X	X	X	X	X	
49	VA avg	X	X	X	X	X	
50	PF avg	X	X	X	X	X	
51	W avg	X	X	X	X	X	
52	ASY	0	X	X	X	X	

Note: (x) stands for an "available" variable, (o) stands for a "not-available" variable.

CARLO GAVAZZI

Available Modules

Type	N. of channels	Ordering code
WM3-96 base		AD1016
AV5.3 measuring inputs		AQ1018
AV7.3 measuring inputs		AQ1019
18-60 VAC/DC power supply		AP1021
90-260 VAC/DC power supply		AP1020
20 mADC analogue output	1	AO1050
10 VDC analogue output	1	AO1051
$\pm 5 \mathrm{mADC}$ analogue output	1	AO1052
± 10 mADC analogue output	1	AO1053
$\pm 20 \mathrm{mADC}$ analogue output	1	AO1054
± 1 VDC analogue output	1	AO1055
± 5 VDC analogue output	1	AO1056
± 10 VDC analogue output	1	AO1057
20 mADC analogue output	2	AO1026
10 VDC analogue output	2	A01027
$\pm 5 \mathrm{mADC}$ analogue output	2	AO1028
± 10 mADC analogue output	2	A01029
$\pm 20 \mathrm{mADC}$ analogue output	2	AO1030
± 1 VDC analogue output	2	AO1031
± 5 VDC analogue output	2	A01032
± 10 VDC analogue output	2	AO1033
RS485 output	1	AR1034
Relay output	1	AO1058
Relay output	2	AO1035
Open collector output	1	A01059
Open collector output	2	AO1036
Open collector output	4	AO1037
Digital inputs	3	AQ1038
RS232 output + RTC (1)	1	AR1039

Possible Module Combinations

Basic unit	Slot 1	Slot 2	Slot 3	Slot 4		
Single analogue output	\bullet					
Dual analogue output	\bullet	\bullet				
RS485 input/output		\bullet				
Single relay output (*)			\bullet			
Single open collector out (*)			\bullet			
Dual relay output (*)			\bullet	\bullet		
Dual open coll. out (*)			\bullet	\bullet		
4 open coll. output (*)				\bullet		
3 digital inputs		Slot5				\bullet
Basic unit						
RS232 input/output + RTC	\bullet					

* (alarm or pulse)
(1) The RS232 module works as alternative of the RS485 module.

Wiring Diagrams

Single phase input connections

Wiring Diagrams (cont.)

Three phase input connections - Balanced loads

Three-phase, 3-wire ARON input connections - Unbalanced loads

Wiring Diagrams (cont.)

Three phase, 4-wire input connections - Unbalanced loads

Front Panel Description

1. Key-pad

Set-up and programming procedures are easily controlled by the 4 pushbuttons.

- "S" for enter programming phase and password confirmation
- for value programming/function selection, page scrolling
- "F" for special functions

2. Display

Instantaneous measurements:

- 4-digit (maximum read-out 9999)

Energies:

- 9 digit (maximum read-out 99999999).

Alphanumeric indication by means of LCD display for:

- Displaying the configuration parameters
- All the measured variables

Dimensions

CARLO GAVAZZI

Terminal Boards

Single analogue output modules

AO1050	$(20 \mathrm{mADC})$
A01051	$(10 \mathrm{VDC})$
A01052	$(\pm 5 \mathrm{mADC})$
A01053	$(\pm 10 \mathrm{mADC})$
A01054	$(\pm 20 \mathrm{mADC})$
A01055	$(\pm 1 \mathrm{VDC})$
A01056	$(\pm 5 \mathrm{VDC})$
A01057	$(\pm 10 \mathrm{VDC})$

Digital output modules

AO1058
Single relay output

A01037
4 open collector outputs

A01035
Dual relay output

AR1039
RS232 output + RTC
Power supply modules

AP1021
18-60 VAC/DC power supply

AP1020
90-260 VAC/DC power supply

[^0]: 0 to $\pm 10 \mathrm{mADC}$
 0 to $\pm 5 \mathrm{mADC}$
 0 to 10 VDC
 0 to $\pm 10 \mathrm{VDC}$
 0 to ± 5 VDC
 0 to ± 1 VDC

